
Appendix A

Background theory for stochastic
processes

A.1 Brief history of stochastic calculus

The development of general theory of stochastic integration has the following impor-
tant milestones

• Ville (1939) defines the concept of martingale for the first time; this is not to say
that martingale-like objects did not appear before but Ville’s definition on the
level of processes (rather than increments) is significant; to see how Paul Lévy
fits into this picture, consult Mazliak (2009);

• Doob (1940) shows that a martingale {Xn}n∈N bounded in L1 has a limit X∞;
furthermore, X is uniformly integrable if and only if Xn = En[X∞]

• Itô (1944) develops L2(P)–integration theory for Brownian motion;

• Itô (1951) proposes his change of variables formula;

• Doob (1953)

– uses what we now call a filtration

– defines what is now known as stopping time

– uses the notion of a stopped process (here called optional stopping transfor-
mation);

– defines submartingale (which he calls semi-martingale; supermartingale is
called ‘lower semi-martingale’);

– shows that a submartingale bounded in L1 has an integrable limit at ∞;

– states what is now known as the Doob decomposition of a submartingale;
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A.1. BRIEF HISTORY OF STOCHASTIC CALCULUS 139

– proves what is now known as Doob’s maximal inequality: if X is a positive
submartingale and p > 1

E

[
sup

0≤t≤T
|Xt|p

]
≤
(

p
p− 1

)p
(E[Xp

T]).

• Girsanov (1960) presents a formula for drift of an Itô process under an equivalent
measure driven by another Itô process;

• Meyer (1962, 1963) introduces processes of class (D), defines and proves unique de-
composition for supermartingales of class (D) into an increasing ‘natural’ process
and a martingale. Later Doléans (1967) shows that increasing natural process is
the same as increasing (therefore finite variation) predictable process;

• Itô and Watanabe (1965) introduce the concept of local martingale and show any
positive supermartingale decomposes into a local martingale and an increasing
natural process;

• Kunita and Watanabe (1967) extend stochastic integration to all (locally) square-
integrable martingales and define 〈X, Y〉 for two (locally) square-integrable mar-
tingales X, Y;

• Meyer (1966) elaborates on his previous results and on the limit theorems of
Doob (1953); in particular, in continuous time he replaces the notion of separable
stochastic process with the simpler notion of process with right-continuous paths;

• Meyer (1967) defines [X, Y] for two local martingales X, Y and shows this is well-
defined even though 〈X, Y〉 might not be. The object [X, X] is interpreted by
Doléans (1969) as quadratic variation of X;

• McKean (1969) writes the classical Itô formula in a measure-invariant way;

• Doléans-Dade and Meyer (1969) define the modern notion of semimartingale (lo-
cal martingale + FV process), construct the stochastic integral of a semimartin-
gale for locally bounded predictable integrands, and give change of variables
formula (Itô–Meyer formula). All this is done in more detail in Doléans-Dade
and Meyer, 1970.

• Meyer (1976) proves that the notions of semimartingale and stochastic integral
are invariant to equivalent change of measure; furthermore he writes the change
of variables formula (the Itô–Meyer formula) in a measure-invariant way
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140 APPENDIX A. BACKGROUND THEORY FOR STOCHASTIC PROCESSES

A.2 Expanded chronology of stochastic calculus

1. Doob (1940) studies discrete-time martingales;

2. Itô (1944) develops L2(P) stochastic integral for Brownian motion;

3. Itô (1951) establishes the first change of variables formula, for Itô processes;

4. Doob (1953)

(a) has a definition of stopping time (without giving it a name, p. 300; modern
terminology appears e.g. in Hunt, 1956);

(b) uses the notion of a stopped process (which he calls “optional stopping
transformation”, pp. 300, 366); also uses the notion of time change (which
he calls “optional sampling”);

(c) defines a submartingale (which he calls semi-martingale); proves that a
stopped (sub)martingale is a (sub)martingale (Theorems 2.1 and 11.6, the
latter under a technical condition)

(d) introduces what is now called the Doob decomposition of a submartingale
(discrete time, eq. (1.5’), p. 297)

submartingale = increasing predictable process + martingale;

5. Meyer (1962, 1963)

(a) Meyer (1962) introduces processes of class (D);

(b) defines potential as a positive supermartingale X with limt→∞ E[Xt] = 0.

(c) in Proposition 1 shows every martingale is of class (DL);

(d) Meyer (1963) proves uniqueness of the following decomposition (now called
Doob-Meyer decomposition) for class (D) supermartingales;

increasing natural process
(same as increasing predictable FV process; Doléans, 1967)

+ martingale

(e) deduces that any square integrable martingale X

(f) characterises accessible/totally inaccessible stopping times, the latter are
typified by the jumps of a Poisson (or even Lévy) process

6. Fisk (1965) studies quasi-martingale = martingale + FV process

(a) the only continuous FV martingale is constant
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A.2. EXPANDED CHRONOLOGY OF STOCHASTIC CALCULUS 141

7. Itô and Watanabe (1965)

(a) introduce the notion of local martingale (credited in Dellacherie and Meyer,
1978, p. 86 and Meyer, 2009)

(b) in Lemma 2, p. 20, prove every positive supermartingale has the Doob-
Meyer decomposition (with local martingale in place of martingale). Posi-
tivity assumption is easily removed by stopping at fixed times to obtain that
every supermartingale is a special semimartingale (Dellacherie and Meyer,
1978, Theorem VII.12, p. 198)

8. Meyer (1966, Theorems 19, 49) has a new characterisation of natural integrable
increasing process (see also Protter, 2005, Theorems III.12-16)

9. Doléans (1967) identifies increasing natural processes with increasing predictable
processes

(a) credited in Dellacherie and Meyer (1978, p. 429), cf. their items VI.61–62

10. Kunita and Watanabe (1967) freely use the notion of localization

(a) extend Itô formula to all (locally) square-integrable martingales

(b) define 〈X, Y〉 for two (locally) square-integrable martingales X, Y. Observe
that 〈X, X〉 is the increasing natural process in the Doob–Meyer decompo-
sition of the submartingale X2 so the novelty is in extending this to XY by
polarization, i.e. exploiting

XY =
1
4

(
(X + Y)2 − (X−Y)2

)
.

11. Meyer (1967)

(a) defines “processus très-bien-mesurable” which is later (Doléans-Dade and
Meyer, 1969) renamed “prévisible”, i.e. predictable

(b) usesMloc for what we now denoteM2
loc and L for what we now callMloc.

In entirely modern way, defines Aloc (processes of locally integrable varia-
tion). Later, in Meyer (1976, Theorem IV.12) or Dellacherie and Meyer (1978,
Theorem VI.80) it is also shown that predictable FV processes are in Aloc.

(c) has a remark (p. 97) that a local martingale is a martingale if and only if it is
of class (DL);

(d) shows for M ∈ M2
loc process M2 has a drift denoted by 〈M, M〉 such that

M2 − 〈M, M〉 ∈ Mloc;
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142 APPENDIX A. BACKGROUND THEORY FOR STOCHASTIC PROCESSES

(e) in Proposition 4 (p. 104) defines square bracket of a process inMloc ([M, M] :=
〈Mc, Mc〉+ ∑ (∆M)2) and shows M2 − [M, M] is a local martingale.

(f) extends stochastic integral to processes inMloc

(g) defines semimartingale as an element ofMloc +Aloc

(h) on p. 108 defines [X, X] as a quadratic variation of X = M + A ∈ Mloc +

Aloc and notes something like [X, X] = [M, M] + [A, A].

(i) It does not appear that invariance under change of measure has ever been a
motivator for this definition of semimartingale.

12. Doléans (1969) shows every martingale has finite quadratic variation in the sense
that quadratic variation on partitions converges in probability to something that
can be chosen right-continuous and increasing.

(a) Millar (1968) shows one can define quadratic variation of a continuous mar-
tingale;

13. Doléans-Dade and Meyer (1969) define semimartingale the way we know it to-
day, i.e. local martingale + FV process;

(a) do not impose integrability on the finite variation part, which is an improve-
ment on Meyer (1967);

(b) point out every supermartingale (not necessarily of class D) is a semimartin-
gale, as is every Lévy process;

(c) use localisation in the modern way, talk about locally bounded processes,
decompose local martingale into a square-integrable local martingale and
integrable variation local martingale

(d) produce the modern Itô formula, what we might call Itô–Meyer formula
which is written almost entirely in a measure-invariant way, except they
use 〈Xc, Xc〉 where Xc stands for continuous martingale part of X, instead
of [X, X]c.

14. Doléans-Dade and Meyer (1970) elaborate on the results announced in Doléans-
Dade and Meyer (1969);

(a) interpret Doob-Meyer decomposition as

class (D) submartingale = predictable increasing integrable process + martingale
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A.2. EXPANDED CHRONOLOGY OF STOCHASTIC CALCULUS 143

(b) decompose a square-integrable local martingale M uniquely into three square-
integrable martingale components

M = Mc + Mdq + Mdp,

where Mc is continuous, Mdq is quasi-left-continuous, and Mdp is the sum
of its jumps at predictable times.

15. Van Schuppen and Wong (1974) have Girsanov formula and make prodigious
use of the [•, •] bracket. Further Girsanov-type results are given in Jacod and
Mémin (1976), Lenglart (1977), Yoeurp (1976)

16. Yoeurp (1976) defines canonical decomposition of a special semimartingale and
shows uniqueness by proving that any predictable local martingale of FV is nec-
essarily constant

17. Meyer (1976)

(a) introduces the notion of a predictable compensator of a process with inte-
grable variation (I.8)

(b) States in III.3 the following two forms of “change of variables formula”

d f (X) = f ′(X−)dX +
1
2

f ′′(X−)d 〈Xc, Xc〉

+
(

f (X− + ∆X)− f (X−)− f ′(X−)∆X
)

= f ′(X−)dX +
1
2

f ′′(X−)d[X, X]

+

(
f (X− + ∆X)− f (X−)− f ′(X−)∆X− 1

2
f ′′(X−) (∆X)2

)
(c) shows predictable FV process has locally integrable variation (IV.12)

(d) defines canonical decomposition of a special semimartingale (IV.32)

(e) In Theorem VI.4 it is shown [X, X] is the limit of quadratic variation sums

(f) In VI.5 it is shown for C1 (!) function f

d[ f (X), f (X)] =
(

f ′(X−)
)2 d 〈Xc, Xc〉+ (∆ f (X))2

(g) VI.22 gives Girsanov-type results and shows P–semimartingale is equiva-
lent to Q–semimartingale for arbitrary Q ∼ P.

(h) VI.25 shows that 〈Xc, Xc〉 does not depend on measure, i.e. definitely iden-
tifies [X, X]c with quadratic variation of Xc and uses invariance of [X, X] to
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144 APPENDIX A. BACKGROUND THEORY FOR STOCHASTIC PROCESSES

conclude
〈Xc, Xc〉 =

〈
X̃c, X̃c〉

where X̃c is continuous martingale part under an equivalent measure

(i) Finally in VI.26 it is shown that for locally bounded integrands stochastic
integral does not depend on measure (the same in Dellacherie and Meyer,
1978, Theorem VIII.12 )

18. Lépingle (1976) describes convergence of p–power variations.

(a) Monroe (1972) has a statement on p–variation of a Lévy process;

(b) Monroe (1976) has an example where quadratic variation diverges in some
sense as partitions become finer.

A.3 Probability space

Probability space is a triplet (Ω,F , P). The set Ω contains all elementary outcomes.
For example, if we were simply rolling a dice we could take

Ω = {1, 2, 3, 4, 5, 6}.

F is the σ–field of events, in the dice example it would be the set of all subsets of Ω.
P is a measure with total mass 1 assigning probabilities to events in F .

It is natural to ask why one needs F . Would it not be enough to assign probabilities
directly to the elements of Ω? In the dice example, this of course does work, and
it is easy to work out the probability of the more complicated events in F from the
probability of the individual elementary outcomes 1, 2, . . . , 6, which on a fair dice is
1/6. For example, the probability of the event {1, 2}, that is, the probability that we
roll 1 or 2, has to be 1/3. In this way the probability measure is extended naturally
from all elements of Ω to F . This approach will continue to work for countable Ω. In
these simple cases F is the set of all subsets of Ω.

But consider now elementary outcomes taking values in the whole interval Ω =

[0, 1]. Suppose that the probability distribution is uniform, so that each outcome has
equal probability. Naturally, the probability of each individual outcome is zero. How-
ever, this tells us nothing about the probability of the event [0, 1/4], which should be
1/4. So in this case it is pointless to specify the probability of individual outcomes and
instead we need to define the probability on intervals [0, x] for 0 < x ≤ 1 and then ex-
tend the probability to arbitrary intersections and their countable unions to add more
events to F .

How large is the σ-algebra F formed by arbitrary intersections and countable
unions of intervals? In particular, does it contain all subsets of [0, 1]? The answer
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is no. Why not? Here we come against something very strange. There are subsets of
[0, 1] which simply cannot be assigned any probability. Mathematically we say that
these subsets, which do not belong to F , are not measurable.1

A.4 Surely and almost surely

In the introductory example the outcome of our random experiment is one number
in the interval [0, 1]. By definition of our experiment, we are sure that it has to be
one such number. Often, when making statements about random outcomes, it is only
possible to assert that something happens with probability 1. In such case we say that
the outcome happens almost surely. For example, the outcome of our experiment will
almost surely be an irrational number. This does not mean that the oucome cannot be
a fraction (a rational number), but the probability of getting a rational number is zero
(because there are only countably many rationals). The sets of measure zero are called
null sets.

It does not sound like much of a sacrifice to know an outcome “almost surely”
instead of “surely”. Yet, it is not entirely innocuous either. Using the example above,
on an interval [0,1] with a uniform distribution all numbers in the interval are almost
surely irrational. An even more striking example is provided by the so-called Nikodym
set which represents a unit square whose every point is painted either black or white.
This can be done in such a way that the square is almost surely white, but at the same
time every line intersecting the square is completely black, with only one white point.

A.4.1 Complete probability space

One would naturally think that if a certain property A holds almost surely (that is on
a set of probability 1), then, conversely, A fails to hold with probability zero. Strictly
speaking, this is false. It may happen that the set where A fails to hold is, in fact, not
even measurable. This can particularly happen in the Borel σ–algebra because Borel
null sets can have subsets that are themselves not Borel-measurable!

So, to avoid such unpleasantness, when dealing with a probability space (Ω,F , P)
it is customary to enlarge F to include all the subsets of P-null sets already contained
in F and extend P to all these subsets by assigning zero measure to them. This does

1There is a subset A of [0, 1] (so-called Vitali set) with the following properties: i) for any two rational
numbers r 6= q the sets r + A and q + A are disjoint; ii) the union of sets r + A over rational −1 ≤ r ≤ 1
covers the whole interval [0, 1] and it is a subset of [−1, 2]. It follows that A cannot be Lebesgue-
measurable, because there are only countably many rationals and the Lebesgue measure is translation-
invariant and countably additive.

In another example, it is possible to divide a unit ball in R3 into four parts and then by rotating and
translating these four parts (so without stretching or squeezing anything!) to produce two disjoint unit
balls. This is the so-called Banach-Tarski theorem.
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146 APPENDIX A. BACKGROUND THEORY FOR STOCHASTIC PROCESSES

not create any contradictions in the general theory. With these extra null sets the prob-
ability space (Ω,F , P) is said to be complete. For example, the completion of Borel
σ-algebra is called the Lebesgue σ–algebra and the corresponding extension of the
Borel measure is the familiar Lebesgue measure.

On a complete probability space one can then use the statements “propertyA holds
almost surely” and “A does not hold on a null set” interchangeably.

A.5 Random variable

Random variable X is a measurable mapping from (Ω,F ) to (Rd,B(Rd)). Measurable
in this context means that the event X ≤ x belongs to F for all x ∈ Rd, so it can be
assigned a probability. The probability measure P on F and the mapping X : Ω→ Rd

give rise to a new measure PX on B(Rd) through the formula

PX(B) = P(X−1(B)).

In probability theory PX is more commonly called the distribution of X.
In other words, the probability space (Ω,F , P) is used as an enormous warehouse

capable of storing the vast number of random variables that are needed to construct
stochastic processes. However, once we are given a random variable X and we know
that no other random variable will be required we can restrict our attention to the
σ-algebra generated by the sets X−1((−∞, x]). This is called “the smallest σ–algebra
generated by X” and it is denoted σ(X).

A.6 When are two random variables the same?

When we say that two random variables X and Y are the same we mean they live on
the same probability space and X = Y almost surely. This is a much stronger statement
than saying the distributions of X and Y are the same, PX = PY. To understand the
distinction, think of two objects from your daily life that are “the same” but are not the
same object.

We will later see how to perform an absolutely continuous change of measure.
Suppose now that Q � P. Then if X = Y P–a.s. then also X = Y Q–a.s. so the
identification of random variables does not depend on the probability measure. So if
X = Y P–a.s. then necessarily PX = PY and also QX = QY. In contrast PX = PY in no
way guarantees QX = QY!

To complete this discussion (and possibly confuse you further) we have X = X
everywhere (not just a.s.) but PX is in general different from QX.
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A.7 Distribution as an image measure*

Speaking more generally, the object PX is an image measure (a.k.a. push-forward mea-
sure) of P via the mapping X. We will us this notation consistently; for a measure µ

and a mapping f the symbol µ f will denote the resulting image measure

µ f (B) = µ( f−1(B)).

In this section we will mention two constructive results on image measures which are
used outside the narrow application of distributions and which will save us a lot of
work later on.

The first result states that given a measurable map g : (B,B) → (C, C) and a mea-
sure µ̃ on (B,B) the resulting image measure µ̃g satisfies∫

B
h̃(g(y))µ̃(dy) =

∫
C

h̃(x)µ̃g(dx), (A.1)

for any measurable map h̃ : (C, C) → (C, C). In particular, the map g does not have
to be one-to-one, so this covers situations where for example g maps x to x2. The
result is very useful when we know the marginal distribution PX of X, in this example
represented by measure µ̃ and want to calculate the mean of g(X) without evaluating
the marginal distribution of g(X) which corresponds to µ̃g in this example. In such
case we would evaluate the lhs of (A.1) with h̃(x) = x.

The second important result tells us what happens when we concatenate several
transformations together. Let us consider another measurable map f : (A,A) →
(B,B) and a measure µ on (A,A). The image measure µ f lives on (B,B) so we can use
it instead of µ̃ in formula (A.1), which now reads∫

B
h(g(y))µ f (dy) =

∫
C

h(x)
(
µ f
)

g (dx), (A.2)

for every measurable h : (C, C) → (C, C). If we also identify the lhs of (A.2) with the
rhs of (A.1) by taking x ≡ y, h̃ ≡ h ◦ g the formula (A.1) then yields∫

A
h(g( f (z)))µ(dz) =

∫
B

h(g(y))µ f (dy) =
∫

C
h(x)

(
µ f
)

g (dx), (A.3)

for every measurable h : (C, C)→ (C, C) which on comparing the first and last expres-
sions in (A.3) means that

µg◦ f =
(
µ f
)

g . (A.4)

How is this useful? Suppose we are given a random variable X which, let us as-
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sume for the sake of the argument, has a standard normal distribution with density,

pX(x) =
1√
2π

e−x2/2,

so that
PX(dx) = pX(x)dx.

Suppose later on we need to work with a new random variable Y = eX = g(X).
One way to do this is to actually compute the distribution PY. In our particular

example PY will be absolutely continuous with respect to the Lebesgue measure on R.
The change of variable formula2 gives

pY(y) =
∣∣∣∣dg−1(y)

dy

∣∣∣∣ pX(g−1(y)) =
∣∣∣∣d ln y

dy

∣∣∣∣ pX(ln y) =
1√
2πy

e−(ln y)2/2.

Now suppose the task is to evaluate the characteristic function of Y,

ϕY(u) =E[eiuY]

=
∫

R
eiuyPY(dy) =

∫
R

1√
2πy

eiuy−(ln y)2/2dy.

The concatenation rule for image measures (A.3) tells us

PY = Pg(X) = (PX)g , (A.5)

that is, the measure PY is the image measure of PX via the mapping g and it is also
the image measure of the original measure P via the composed mapping g(X). This is
again true for any g and X.

Now we can see how one can compute ϕY(u) easily without evaluating the distri-
bution of Y. Namely, formula (A.1) with µ̃ ≡ PX, g(x) = ex and h̃(y) ≡ eiuy asserts∫

R
eiuyPY(dy) =

∫
R

eiuex
PX(dx).

It turns out that the results (A.1) and (A.5) are very handy when working with Lévy
processes and their transformations.

2The change of variable formula hinges on the fact that in this case g−1 is a again a measurable map.
In general g−1 may not be measurable unless g maps null sets into null sets.
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A.8 Filtration

Prices change over time. To capture the time evolution of prices we work with nested
σ-algebras indexed by time, F = {Ft}t∈[0,T]. This collection of σ–algebras is called
a filtration. We require that information is not lost over time, Fs ⊆ Ft for s ≤ t.
Additionally we require that the filtration is right-continuous, meaning

Fs =
⋂
s<t
Ft.

Intuitively, this corresponds to a situation where surprises are revealed at a specific
time (as opposed to being revealed in an arbitrarily short interval after a specific time).
Finally we need all null sets of FT to be inside F0. These conditions will become
important in the next section.

A.9 Discrete vs continuous time

In applications we often talk about discrete-time models in contrast to continuous-time
models. This terminology is inaccurate and potentially misleading. All dynamic mod-
els can be written down in continuous time. The attribute discrete-time does not refer
to time being discrete but rather to randomness being revealed at a finite number of
time points.3 This means the filtration is piecewise constant, i.e. there is a partition
{tk}n

k=0 with t0 = 0 and tn = T such that

Ft = Ftk for tk ≤ t < tk+1.

In the terminology of stochastic processes these special times are called fixed times of
jump, meaning there is a-priori a non-zero probability that a discrete change will occur
at tk. It is customary to identify the fixed jump times of a discrete-time model with
non-negative integers, i.e. tk ≡ k k = 0, 1, 2, . . ..

On the opposite side of the spectrum we have continuous processes, that is pro-
cesses whose value never jumps. Between the two extremes there are processes that
jump at random times. These processes are classified into two subcategories. In the
first subcategory there are processes that jump at predictable times (for example, the
jump may only occur at the time when a Brownian motion hits a prespecified bar-
rier). In the second subcategory we have processes whose jumps occur only at totally

3We could even allow a countable number of time points as long as each point has a well-defined
predecessor and successor. For example the sequence of time points 0, {1/n}∞

n=1 is countable but 0 does
not have a successor, so this would not count as a discrete-time model in the sense we use here. For a
model with countably many time points to qualify as a discrete-time model it must be the case that the
only accumulation point is +∞.
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inaccessible times (like a Poisson process). The latter (those jumping only at totally
inaccessible times) are called quasi-left-continuous processes.

The significance of discrete-time models, versus continuous processes, and the two
shades in between, lies in different appearance of the drift process and degrees of
mathematical difficulty with which various mathematical properties (such as martin-
gale property) can be verified. For example, in discrete time a local martingale X that
satisfies E[|XT|] < ∞ is automatically a true martingale on [0, T]. Outside discrete-time
environment a local martingale may not be a true martingale on [0, T] even if it square
integrable, supt∈[0,T] E[X2

t ] < ∞. Inbetween, continuous processes, and in particular
diffusions, allow for specific tailor-made criteria to check martingale property of local
martingales. The drift of all quasi-left-continuous processes is continuous (if it exists).

Because the mathematical handling of discrete-time models is substantially sim-
pler (and here I mean the checking of technical conditions, such as the martingale
property) the terminology ”continuous-time model” really means everything other than
discrete-time models. So continuous-time models include i) continuous price pro-
cesses, ii) quasi-left continuous processes and iii) processes with jumps at random but
predictable times.

A.10 When are two stochastic processes the same?

A.10.1 Modification

One possible definition of a stochastic process is that it is a collection of random vari-
ables indexed by time. Two processes X and Y are then effectively the same if it is true
that

P(Xt = Yt) = 1 for all t ∈ [0, T].

We then say that Y is a modification of X.
In Finance we work with adapted processes. Process X := {Xt}t∈[0,T] is said to be

adapted to filtration F if Xt is Ft-measurable for all t ∈ [0, T]. This just means that
the randomness in Xt does not use any information revealed after time t. Now, the
condition that F0 contains all the null sets of FT is required so that we can be sure that
any modification of an adapted process is again adapted.

A.10.2 Indistinguishability

It is also possible to view a stochastic process X as a collection of paths X•(ω). If we
want to make sure that the paths of X and Y are the same with probability 1 then we
need a stronger notion of equality between processes. This is because for different t
the inequality Xt 6= Yt may occur on different null sets of paths and the union of these
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null sets over the uncountable [0, T] may in fact add up to the whole Ω. We say that X
and Y are indistinguishable if

P({ω ∈ Ω : Xt(ω) 6= Yt(ω) for some t ∈ [0, T]}) = 0.

As we have noted above, two modifications of the same process are not necessarily
indistinguishable. One needs to assume more structure to assign a unique set of paths
to a collection of random variables. The default choice is to model prices as right-
continuous processes with left limits. We say that a process X is cádlág4, meaning
its paths are right-continuous with left limits, if the paths X•(ω) are cádlág almost
surely. It then follows that if X has two cádlág modifications then they are in fact
indistinguishable, in other words a cádlág modification, if it exists, is unique (up to
indistinguishability).

The right-continuity of filtration F is assumed to ensure that stochastic integrals
and martingales do have an adapted cádlág modification. The right-continuity is
needed to obtain results such as the Doob maximal inequality in continuous time.

A.11 Radon-Nikodym theorem

We say that measure P? is absolutely continuous with respect to P (writing P? � P) if
P(A) = 0 implies P∗(A) = 0, for all events A ∈ FT. The Radon-Nikodym5 theorem
states that P∗ � P if and only if there is a random variable Z such that

EP?
[1A] = E[Z1A] for all A ∈ FT.

This random variable is unique P-almost surely and it is denoted dP?/dP. As an im-
mediate consequence

EP?
[X] = E[ZX], (A.6)

whenever one of the expressions in (A.6) is well defined.
If, additionally, we have P� P∗ then we say that P and P? are equivalent, writing

P ∼ P?. In such case the notions of P-almost surely and P∗-almost surely coincide.
Furthermore, it holds that

dP/dP? = 1/(dP?/dP).
4From the French continue à droite avec des limites à gauche.
5Johann Radon (b. 1887, Děčı́n, Czech Republic, d. 1957, Vienna) and Otton Marcin Nikodym (b.

1887 Zablotow, Ukraine, d. 1974 Utica, USA)
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A.12 Conditional expectation

A.12.1 Absolutely integrable case

Let G ⊂ F . For any random variable Y on (Ω, F , P) such that E[|Y|] < ∞ there is (an
almost surely unique) G –measurable random variable denoted E[Y|G ] such that

E[1B(Y− E[Y|G ])] = 0 for all B ∈ G .

The proof goes as follows. Without loss of generality we may assume Y ≥ 0,
otherwise write Y = Y+ − Y− and work with Y+ ≥ 0, Y− ≥ 0 separately. Define
a new measure P?

G on (Ω, G ) by setting

P?
G (B) =

E[1BY]
E[Y]

for all B ∈ G . (A.7)

Letting PG denote P restricted to G one has P?
G � PG on (Ω, G ) and the Radon-

Nikodym theorem shows there is an P–almost surely unique G –measurable random
variable dP?

G /dPG such that

P?
G (B) = EP?

G [1B] = E
[

1B
dP?

G

dPG

]
. (A.8)

Equating (A.7) with (A.8) shows that

1
E[Y]

dP?
G

dPG

satisfies the conditions required by the conditional expectation. The almost sure unique-
ness follows from the Radon-Nikodym theorem.

A.12.2 Generalized conditional expectation

When E[|Y|] = ∞ there may still be a perfectly well-defined conditional expectation.
To obtain it we proceed in two steps.

1. Define E[|Y| |G ] = limn→∞ E[|Y|1{|Y|≤n}|G ]. This is a random variable that pos-
sibly takes the value of +∞ but still has all the properties of conditional expecta-
tion claimed earlier.

2. On the set where E[|Y| |G ] < ∞, Define E[Y|G ] by setting

E[Y|G ] = E[Y+|G ]− E[Y−|G ].

This definition appears in Jacod and Shiryaev (2003, p. I.1.1).
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A.13 Optional projection

Given an integrable random variable Y ∈ L1(Ω,FT, P) it is natural to want to construct
a new process

Xt = Et[Y], t ∈ [0, T].

The problem with the construction as stated above is that for each fixed t the variable
Xt is unique up to the null sets of the information algebra Ft. For different values of
t these null sets may be different and together they may cover the whole Ω so that in
the end X as a process might not be defined properly on any path.

This problem is remedied by the notion of optional projection of non-adapted pro-
cesses. We first construct the (non-adapted) constant process Yt := Y. The optional
projection theorem says there is a unique (up to indistinguishability) optional process
denoted oY such that for any stopping time τ one has

oYτ1τ<∞ = Eτ[Yτ1τ<∞].

In particular, for any fixed t ≤ T
oYt = Et[Y]

so oY is precisely the right object to represent the process Et[Y].

A.14 Density process of a change of measure

Given a probability measure on a large information set, say FT, we can always con-
sider the same measure on a smaller information set. In our case the smaller informa-
tion set will be Ft with t < T. The restriction of P to Ft is denoted P|Ft or just Pt for
short. Consider the following 3-period binomial example. The large information set is
given by the partition

P3 = {{uuu}, {uud}, {udu}, {udd}, {duu}, {dud}, {ddu}, {ddd}}.

Suppose the measure P is defined by

P({uuu}) = 1
8

, P({uud}) = 1
16

, P({udu}) = 1
4

, P({udd}) = 1
16

,

P({duu}) = 1
8

, P({dud}) = 1
8

, P({ddu}) = 1
16

, P({ddd}) = 3
16

.

On the smaller information set F2 generated by the partition

P2 = {{uuu, uud}, {udu, udd}, {duu, dud}, {ddu, ddd}}
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the restricted measure P2 reads

P2({uuu, uud}) = 3
16

, P2({udu, udd}) = 5
16

,

P2({duu, dud}) = 1
4

, P2({ddu, ddd}) = 1
4

.

At t = 1 the information set is generated by the two-element partition

P1 = {{uuu, uud, udu, udd}, {duu, dud, ddu, ddd}}

and the restricted measure P1 reads

P1({uuu, uud, udu, udd}) =
1
2

,

P1({duu, dud, ddu, ddd}) =
1
2

.

Let us define a separate measure P? by reversing the role of u and d in the definition
of P. Once again we can compute the restrictions P?

2 and P?
1 . In general, it is easily seen

that if P? is absolutely continuous with respect to P then P?
t � Pt and hence we can

compute the Radon-Nikodym derivatives

dP?
t

dPt
.

We will call the process
{

dP?
t

dPt

}
t∈[0,∞)

the density process of the change of measure

dP?/dP. Now, quite amazingly, the change of measure dP?
t /dPt can be computed

directly from dP?/dP as a conditional expectation, i.e.

dP?
t

dPt
= Et

[
dP?

dP

]
. (A.9)

Exercise A.1. Compute P?
t for t = 1, 2, 3 and using this result evaluate dP?

t /dPt for t =

1, 2, 3. Separately compute Et

[
dP?

dP

]
for t = 1, 2 and verify that equality (A.9) holds.

A.15 Stopping time

A [0, ∞]–valued random variable τ is called a stopping time if the event τ ≤ t belongs
to Ft for all t ∈ [0, T]. Intuitively, τ is a stopping time if we can decide in every contin-
gency whether we have stopped or not without having to wait for extra information
that will only become available later. Typical example of a stopping time is “the first
time you rode a motorbike”. An example of a random time that is not a stopping time
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would be “the time you had your last ever motorbike ride”.
In stochastic analysis it is common to define s∧ t := min(s, t) and s∨ t := max(s, t).

Let τ be a stopping time and X an adapted process. We define Xτ, the process stopped
at τ, by

Xτ
t = Xt∧τ.

A.16 Localization

An increasing sequence of stopping times {τn}∞
n=1 such that limn→∞ τn = ∞ is called a

localizing sequence. The idea of localization is that while process X itself may lack
a certain desirable property, it may be possible that there is a localizing sequence
{τn}∞

n=1 such that each of the stopped processes Xτn does have this property.

Definition A.1. Let C be a class of processes. We say that process X is locally in C and write
X ∈ Cloc if there is a localizing sequence of stopping times {τn}∞

n=1 such that Xτn ∈ C for each
n.

A.17 Martingales and UI martingales

Process X is a martingale if for all s ≤ t one has Xs = Es[Xt]. This means that the
process does not change “on average” between any two time points s ≤ t, starting
from any contingency at any time s.

Definition A.2. We say that a collection of random variables {Xi}i∈I is uniformly inte-
grable (UI) under P if for each ε > 0 there is K such that

E[|Xi|1|Xi|>K] < ε, for all i ∈ I.

We say that a process X is uniformly integrable if the collection of random variables {Xt}t∈[0,∞)

is uniformly integrable.

Now, it can be shown that if X is a martingale and T is a fixed time then XT (which
is process X stopped at T) is uniformly integrable. This is achieved using the property
Xt = Et[XT] for all t ∈ [0, T]. In fact, more can be said. It is known that a UI collection
of random variables is automatically bounded in L1(P).

Doob (1940) has shown that a martingale X bounded in L1(P) necessarily possesses
an integrable limit limt→∞ Xt = X∞ and if X is UI then furthermore

lim
t→∞

E|Xt − X∞| = 0

and Xt = Et[X∞]. We say that the UI martingale X is closed by X∞. In Finance we typi-
cally work with a finite time horizon T and therefore can consider the stopped process
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XT which will be a UI martingale (with terminal value XT) if X is a martingale. So on
a finite time horizon there is no distinction between a martingale and UI martingale.

Example A.3. Brownian motion is a martingale (and therefore UI martingale on every finite
time interval) but it is not a UI martingale on the whole time line because its L1–norm explodes,

E[|Wt|] =
√

2t
π

t→∞→ ∞.

A.18 Martingales and local martingales

Let us now see how the concepts of the previous section relate to local martingales.
Recall that a local martingale is a process which becomes a martingale when suitably
stopped, as per Definition A.1.

We have seen above that every martingale is UI on every finite time interval. It
is however not true that a local martingale uniformly integrable on a finite interval is
already a martingale on that interval. Here one needs a stronger notion, supplied by
the following definition due to Meyer (1962).

Definition A.4. We say that process X is of class (D) if the set of random variables

{Xτ : τ is a finite stopping time}

is uniformly integrable. We say that X is of class (DL) if the set

{Xτ : τ is a bounded stopping time}

is uniformly integrable.

Theorem A.5. A local martingale is a uniformly integrable martingale if and only if it is of
class (D). A local martingale is a martingale iff it is of class (DL).

A.19 Predictable processes

We come to a concept which is probably hardest to get used to because it is based on
thinking of a stochastic process as a map from R+×Ω→ R. The positive real line R+

represents the time while the elements of Ω label individual paths of a process. We
equip R+×Ω with its own σ-algebra generated by sets [0, t]× A where t > 0 and A ∈
F . Now recall from section A.5 that a random variable X generates its own σ-algebra.
In the same way a process X : R+ ×Ω → R generates its σ-algebra. Now consider the
σ-algebra generated by all left-continuous processes. This algebra on R+ ×Ω is called
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the predictable σ–algebra, denoted P . We say that process X is predictable iff X as a
mapping from R+ ×Ω to R is P–measurable.

The label predictable may seem to suggests that the given process does not have
much short-term randomness. This intuition is wrong because a Brownian motion is
continuous and therefore predictable.

A.20 Semimartingales

As we have seen in Section A.10.1 a process is determined uniquely only once its
path properties have been fixed. The default choice is to model asset prices as right-
continuous with left limits (càdlàg). This brings us to the notion of a semimartingale.
Process X is a semimartingale if its paths are almost surely cadlag and if there is a de-
composition

X = A + M

where A is a process of finite variation and M is a local martingale. This decomposition
is not unique because there are many local martingales with paths of finite variation
and these can be moved from A to M, or vice versa. A prototypical example of a
process that belongs to both A and M is a compensated Poisson process.

For a semimartingale X we denote by X− the process of left limits Xt−(ω) =

lims↗t Xt(ω). Jumps of X are captured as the difference between the original pro-
cess and its left limit, ∆X = X − X−. Note that while ∆X is again a semimartingale,
process X− is not (it is not right-continuous to begin with). We know however that
X− is predictable (automatically, because X− is left-continuous) and locally bounded
(thanks to left-continuity the supremum process of X− is finite).

We say that X is a special semimartingale if

X = X0 + BX + MX

where BX is a predictable process of finite variation and MX is a local martingale, BX
0 =

MX
0 = 0. This decomposition is unique and it is called the canonical decomposition of

X. Not all semimartingales are special, but those with bounded jumps always are. In
particular all continuous semimartingales are special.

A.21 Stochastic integration

Given an arbitrary semimartingale X stochastic integral
∫

ηdX can be defined for any
locally bounded predictable process η. By default the paths of

∫
ηdX are taken to be

cádlág and the integral process then becomes a new semimartingale. Note that η itself
need not be a semimartingale because it may not be right-continuous. In particular
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X−, which is not a semimartingale in general, can be used to integrate any other semi-
martingale.

If X itself has finite variation then it is possible to define
∫

ηdX also for integrands
that are not predictable, but in general such integration is not well defined.

A.22 Stochastic differential equations

Let X be a (multidimensional) semimartingale. The SDE dY = a(Y−)dX has a unique
solution if function a is locally Lipschitz. The same SDE will have a solution that exists
at all times (does not explode) if function a grows at most linearly. For example the
SDE

drt = (α− βrt)dt +
√

rtdWt,

r0 > 0,

with X ≡ (t, W) and a(r) = (α− βr,
√

r) satisfies the linear growth condition and also
the local Lipschitz condition on the set (0, ∞).

Another ubiquitous example is the solution of

dYt = Yt−dX,

which is denoted by E (X) and called the stochastic exponential of X. In finance dX
could represent the rate of return on a particular asset and E (X) would then be the
value of a fund whose gains are being continuously reinvested in the asset with return
dX.
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Doléans-Dade, C. and P.-A. Meyer (1969). “Intégrales stochastiques par rapport aux
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Chapter 1

(Mostly) continuous-time stochastic
calculus with some applications at the
end

The material in this section is reasonably standard an you will have seen it already.
The novelty, such as it is, lies in the representation of stochastic processes. We write
(represent) each stochastic process in a measure-invariant way. For Itô processes this
approach goes back to McKean (1969) and is by now quite standard, see for example
Grigoriu (2002), although it has yet to appear in standard asset pricing textbooks. The
measure-invariant representation has many advantages as it is easier to write down
and memorise, especially when it comes to measure changes. As a background read-
ing you may wish to download Černý and Ruf (2019) discussing measure-invariant
calculus with jumps.

1.1 The time process

Strictly speaking Xt is not a process, it is just one random variable from the collec-
tion which defines the process X. The worst abuse of notation which often leads to
students’ confusion occurs for the time process. Suppose we denote the time process
by I, then It = t. This would be the correct way to write things. However, everyone
denotes the time process by t so the symbol t is at once the whole process and also one
specific value. This bad notation is so pervasive that one has to learn to live with it.

1.2 Integral notation

Consider a filtered probability space and on this space consider a semimartingale X
and a locally bounded predictable process η. We can then define a new semimartingale
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2 CHAPTER 1. (MOSTLY) CONTINUOUS-TIME STOCHASTIC CALCULUS

Y by setting

Yt = Y0 +
∫ t

0
ηsdXs. (1.1)

This follows from Dellacherie and Meyer (1978, Theorem VIII.3) by localization. His-
torically, the stochastic integral (1.1) is constructed by decomposing X into two com-
ponents, one of which is a (locally) square-integrable martingale. Such decompos-
tion is clearly measure-specific. However, the resulting stochastic integral is measure-
invariant (Meyer, 1976, Theorem VI.26). It therefore makes sense to write the integral
(1.1) without decomposing X.

There is a helpful criterion to decide local boundedness of a predictable process
(Larsson and Ruf, 2014, Proposition 3.2(vi)):

predictable process η is locally bounded ⇐⇒ sup
0≤s≤t

|ηs| < ∞ for all t > 0.

By this criterion, any left-continuous finite-valued process is locally bounded.

Notice that ηs in (1.1) must not depend on t by construction. If it did the calculus
below would not be valid any longer (see Example 1.2).

We write (1.1) in short
dYt = ηtdXt. (1.2)

We will mostly use the differential form (1.2) but every now and then we will need to
convert it back to the integral. This is done by means of the (trivial) statement

Yt = Y0 +
∫ t

0
dYs (1.3)

which says that terminal value Yt is obtained from the initial value Y0 by adding all
the increments of process Y in the time interval [0, t].

Example 1.1. Suppose
dYt = tdt, (1.4)

with Y0 = 1. Evaluate Yt.

Solution: This is a good example of a possible mixup in notation. In the expression for dYt

symbol t represents a process, not a fixed date. The correct interpretation of (1.4) is

dYs = sds, (1.5)

and not dYs = tds. On using (1.5) in equation (1.3) we obtain the correct result

Yt =Y0 +
∫ t

0
dYs = 1 +

∫ t

0
sds = 1 + t2/2. (1.6)
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1.3. QUADRATIC COVARIATION 3

Example 1.2. Suppose process X is given and we define Y as an exponentially-weighted mov-
ing average of X values

Yt =
∫ t

0
e−α(t−s)Xsds.

Find the expression for dYt.
Solution: In this case we cannot write an expression for dYt directly because the integrand
e−α(t−s)Xs depends on t. Such situation is not covered by stochastic integration directly. In
this case we are lucky enough to be able to write

Yt = e−αt
∫ t

0
eαsXsds,

and now the integral has the right form. On dividing by e−αt we obtain

eαtYt =
∫ t

0
eαsXsds,

In this way, we have obtained an expression for d(eαtYt)

d(eαtYt) = eαtXtdt.

To come up with an explicit expression for dYt we would need the Itô–Meyer formula which
is explained below in Proposition 1.3. We anticipate slightly by saying that the Itô–Meyer
formula yields

d(eαtYt) = eαtdYt + αeαtYtdt

and after rearranging one obtains dYt = (Xt − αYt)dt.

1.3 Quadratic covariation

Suppose X, Y are two arbitrary semimartingales. Then the process with value

XtYt − X0Y0 −
∫ t

0
Xs−dYs −

∫ t

0
Ys−dXs

is well defined. We call it the quadratic covariation of X and Y, and its value is de-
noted by [X, Y]. The process [X, X] is called the quadratic variation of X. In differential
notation

d[X, Y]t = d(XtYt)− Xt−dYt −Yt−dXt

[X, Y]0 = 0.

After rearranging
d(XtYt) = Xt−dYt + Yt−dXt + d[X, Y]t. (1.7)
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4 CHAPTER 1. (MOSTLY) CONTINUOUS-TIME STOCHASTIC CALCULUS

• It is not at all obvious from (1.7) but the process [X, X] is increasing. And
because [X, X] is well-defined, i.e. finite-valued, this means [X, X] is automat-
ically of finite variation (FV).

• It is much easier to see that [·, ·] is bilinear, therefore satisfies the polarization
identity

[X, Y] =
1
4
([X + Y, X + Y]− [X−Y, X−Y]) .

This means [X, Y], too, is of finite variation.

1.3.1 Simplified notation

Some textbooks use dXtdYt instead of d[X, Y]t and we shall adopt this convention here.
This has the following advantages. The following box works for all semimartingales.

First, the expression (1.7) evokes a 2nd order Taylor expansiona

d(XtYt) = Xt−dYt + Yt−dXt + dXtdYt.

Secondly, the intuition this creates is the right one; [X, X] does behave like a
quadratic expression in that

[X + Y, X + Y] = [X, X] + 2[X, Y] + [Y, Y],

which in the (dXt)2 notation leads to a very natural statement

(dXt + dYt)
2 = (dXt)

2 + 2dXtdYt + (dYt)
2.

Likewise, the homogeneity property[∫ ·
0

ηtdXt,
∫ ·

0
ξtdYt

]
=
∫ ·

0
ηtξtd[X, Y]t,

takes a very natural form in

(ηtdXt)(ξtdYt) = ηtξtdXtdYt.

aThis is even more obvious with Y = X,

dX2
t = 2Xt−dXt + (dXt)

2.
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1.4. ITÔ–MEYER FORMULA FOR CONTINUOUS PROCESSES 5

1.3.2 Time and quadratic covariation

Time process has a very special property in that its quadratic covariation with any
other semimartingale is zero,

dtdXt = 0. (1.8)

As a special case we obtain (dt)2 = 0. Proposition 1.10 explores this property in a
more general context.

1.4 Itô–Meyer formula for continuous processes

For g : Rn → R we introduce the notation

∂ig(x) =
∂g(x1, x2, . . . , xn)

∂xi
, ∂ijg(x) =

∂2g(x1, x2, . . . , xn)

∂xi∂xj
, i, j ∈ {1, . . . , n}

where such derivatives exist.

Proposition 1.3. Let g : Rn → R be a twice continuously differentiable function on an open
set U ⊆ Rn and X = (X(1), X(2), . . . , X(n)) a continuous semimartingale with values in U .
Then g(X) is a continuous semimartingale and we have

dg(Xt) =
n

∑
i=1

∂ig(Xt)dX(i)
t +

1
2

n

∑
i,j=1

∂ijg(Xt)dX(i)
t dX(j)

t . (1.9)

Proof. See Dellacherie and Meyer (1978, Theorem VIII.27) and the paragraph preced-
ing it.

The idea of writing the Itô formula in this way was first presented in McKean (1969).
The formula (1.9) is however more general and does not assume that X is an Itô pro-
cess, merely that it is continuous. In this generality it appears in Meyer (1967, Theo-
rem II.3) but see also Kunita and Watanabe (1967, Theorem 2.2).

Example 1.4. Evaluate the expression d(eαtYt).

Method 1: Set g(t, Yt) = eαtYt. Evaluate the necessary partial derivatives

∂1g(t, Yt) = αeαtYt, ∂2g(t, Yt) = eαt,

∂11g(t, Yt) = α2eαtYt, ∂12g(t, Yt) = αeαt, ∂22g(t, Yt) = 0.

Substitute these into the Itô formula (1.9),
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6 CHAPTER 1. (MOSTLY) CONTINUOUS-TIME STOCHASTIC CALCULUS

d(eαtYt) = dg(t, Yt) =∂1g(t, Yt)dt + ∂2g(t, Yt)dYt

+ ∂11g(t, Yt)(dt)2 + 2∂12g(t, Yt)(dtdYt) + ∂22g(t, Yt)(dYt)
2,

=αeαtYtdt + eαtdYt.

We have used (dt)2 = (dtdYt) = 0 from equation (1.8).

Method 2: It is faster to employ equation (1.7) directly, where we think of eαt as being the
process X

d(eαtYt) = eαtdYt + Ytdeαt + dYtdeαt. (1.10)

Now use the Itô formula to obtain deαt = αeαtdt and plug this back into (1.10),

d(eαtYt) = eαtdYt + αYteαtdt.

We have again used the property (1.8) to obtain dtdYt = 0.

Example 1.5. Consider two continuous processes J, S such that S > 0. Write down the
Itô–Meyer formula for the process Y = J/S. This situation arises in the pricing of Asian
options.
Solution: Let g(x) = x1

x2
for x1 ∈ R and x2 6= 0. Observe the open set U appearing in

Proposition 1.3 in this case is given by the half-plane U = R× (0, ∞). First we evaluate the
necessary partial derivatives

∂1g(x) =
1
x2

, ∂2g(x) = −x1

x2
2

,

∂11g(x) = 0, ∂12g(x) = − 1
x2

2
, ∂22g(x) = 2

x1

x3
2

.

The Itô formula (1.9) reads

dYt =d
Jt

St
= dg(Jt, St)

=∂1g(Jt, St)dJt + ∂2g(Jt, St)dSt

+
1
2
(∂11g(Jt, St)(dJt)

2 + 2∂12g(Jt, St)dJtdSt) + ∂22g(Jt, St)(dSt)
2)

=
dJt

St
− Jt

dSt

S2
t
+

1
2

(
0× (dJt)

2 − 2
dJtdSt

S2
t

+ 2Jt
(dSt)2

S3
t

)
=

dJt

St
− J

dSt

S2
t
− dJtdSt

S2
t

+ Jt
(dSt)2

S3
t

.
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1.5. INFORMATION STRUCTURE (FILTRATION) 7

1.5 Information structure (filtration)

1.5.1 Filtration

Filtration captures different amounts of information available at different time points.
Mathematically it is a collection of increasing σ–fields indexed by time,

F = {Ft}t∈[0,T].

Intuitively, in a discrete setting where all possible outcomes are captured by a non-
recombining tree the σ–algebra Ft is generated by all the nodes in the tree at time
t.From here it is obvious that Fs ⊂ Ft for s ≤ t since there are necessarily fewer
nodes at time s than there are nodes at time t. For more details consult Černý (2009,
Chapter 8).

1.5.2 What is known and when

In applications it is important to distinguish time points when the value of a certain
random variable is already known and time points when it is still perceived as being
random. To express mathematically that a random variable X is known at time t we
say that X is Ft–measurable. In a discrete setting this means that X assigns just one
value (as opposed to two or more) to each node in the non-recombining tree at time t.

A process Y such that Yt is known at time t for all t ∈ [0, T] is called an adapted
process. In discrete time a process Y is predictable if Yt is known at t − 1 for all t. A
process Y is said to be deterministic if the value of Yt is known already at time 0 for all
t. The understanding of when a particular information is revealed is important when
calculating expected values.

1.6 Expectation operator

1.6.1 Conditional expectation

Given a filtration F = {Ft}t∈[0,T] one denotes the expectation of random variable X
conditional on the information at time t by E[X|Ft]. We will write more compactly
Et[X] = E[X|Ft] when the filtration is fixed.1 The quantity Et[X] is a random variable
and it assigns one value to each node in a non-recombining tree at time t. These values

1In these notes, we work with one filtration at a time, so the shorter notation Et[Y] is perfectly
unambiguous. In contrast, in the literature on insider trading one uses one filtration, F, for unin-
formed traders and another, larger filtration, G, for insiders. Then one has to use the full notation
E[Y|Ft], E[Y|Gt].
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8 CHAPTER 1. (MOSTLY) CONTINUOUS-TIME STOCHASTIC CALCULUS

may be different from node to node for given t. This means Et[X] is known at time t
but it is generally not known at time 0.

1.6.2 Generalized conditional expectation

Example 1.6. Consider the following model. Let U take the values ±1 with equal probability.
Let V be a random variable, independent of U, with zero mean and infinite variance. Let
X0 = 0, X1 = V, and X2 = V + UV2. Finally, consider the filtration generated by X, i.e.,
F0 trivial, F1 = σ(V), and F2 = σ(U, V).

The conditional expectation E1[X2], as described in Appendix A, is not well-defined because
E[|X2|] = ∞. However, the mean of U is zero, hence one should be able to write

E[V + UV2|V] = V. (1.11)

This, however, needs a more careful definition of conditional expectation, or rather a condition
less restrictive than E[|X2|] = ∞.

The idea of generalized conditional expectation is to build E1[X2] piece-wise. Suppose
there is an event P ∈ F1 such that E[|X2|1P ] < ∞. Then the conditional expecta-
tion is well-defined on the subset P in the standard way and therefore it is defined
everywhere if we can find a sequence of such events P that cover the whole Ω. In the
present example one can take P = {ω ∈ Ω : |V(ω)| ≤ n} for n ∈ N and this makes
the expression (1.11) rigorous.

1.7 Predictable characteristics

1.7.1 Canonical decomposition of special semimartingale

Every semimartingale X with bounded jumps has a unique canonical decomposition

dXt = dBX
t + dMX

t ,

where BX is a predictable process of finite variation and MX is a local P–martingale,
both starting at zero. As discussed above BX corresponds to a no-surprise component
while MX is a purely random component with conditional mean zero. In discrete time
this decomposition looks very natural

Xt = Et−1[Xt]︸ ︷︷ ︸
predictable part

+ (Xt − Et−1[Xt])︸ ︷︷ ︸
random part with

zero conditional mean

.
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1.7. PREDICTABLE CHARACTERISTICS 9

If we now subtract Xt−1 on both sides we will obtain the discrete-time version of the
canonical decomposition

Xt − Xt−1︸ ︷︷ ︸
∆Xt

= Et−1[Xt]− Xt−1︸ ︷︷ ︸
∆BX

t

+ (Xt − Et−1[Xt])︸ ︷︷ ︸
∆MX

t

.

The canonical decomposition depends on the chosen probability measure, but the pro-
cess X itself does not. When dealing with Itô processes you are free to think of MX

as the “Brownian motion part” of X. We refer to BX as the cumulative drift. In this
sense, a predictable process of finite variation is a “pure drift”.

1.7.2 Predictable characteristics of a continuous process

A peculiar property of a continuous semimartingale X is that its quadratic variation
[X, X] is always predictable and of finite variation. That is [X, X] is a pure drift. This
is generally no longer true when X has jumps.

We call (BX, CX = [X, X]) the predictable characteristics of X. By construction the
drift part BX is sensitive to the chosen probability measure, but CX is not. We now
wish to relate BX, CX to the drift and volatility of X.

1.7.3 Differential characteristics, Itô process, drift and volatility

A continuous semimartingale X is called an Itô process if there are predictable pro-
cesses bX, cX such that

dBX
t = bX

t dt,

dCX
t = cX

t dt.

We call bX the drift and
√

cX the volatility of process X.

Often one needs to consider a multivariate process X, in which case bX(t) is vector-

valued and cX(t) a positive semidefinite matrix-valued (i.e. cX behaves like a variance-

covariance matrix). In such case
√

cX
ii is the volatility of X(i) while cX

ij is the covariation

rate between X(i) and X(j) i.e.

dX(i)dX(j) = cX
ij dt.
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10 CHAPTER 1. (MOSTLY) CONTINUOUS-TIME STOCHASTIC CALCULUS

1.7.4 Itô process with Markov property = diffusion

Proposition 1.7. If there are deterministic functions f , g such that

bX(t) = f (t, Xt),

cX(t) = g(t, Xt),

then X is Markov under P, meaning that for any smooth bounded function h and any s ≤ u
the conditional expectation

Es[h(Xu)]

is a function of s and Xs only. In such case we call process X a diffusion under P.

When the drift and volatility are independent of time

bX(t) = f (Xt),

cX(t) = g(Xt),

we say that the process X is time-homogeneous under P.

1.8 Processes with independent increments

Theorem 1.8. A continuous semimartingale is a process with independent increments (PII)
under measure P if and only if BX and CX are deterministic.

Proof. Jacod and Shiryaev (2003, Theorem II.4.15).

The next statement shows that continuous PII-s are normally distributed. This forms
the basis of most results in these notes.

Proposition 1.9. If a continuous semimartingale X is a PII under P then

1. for any s ≤ t we have

Xt|Fs ∼ N(Xs + BX
t − BX

s , CX
t − CX

s ).

In other words the conditional P–distribution of Xt as of time s is Gaussian.

2. For each n ≥ 1 and any times 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn , the random variables{
Xtr − Xtr−1

}
r=1,...,n are independent.

Proof. Jacod and Shiryaev (2003, Theorem II.4.4).

Observe that a continuous PII process is not necessarily an Itô process. For exam-
ple, CX(t) could be the cumulative distribution of the Cantor measure on [0, 1] hence
not absolutely continuous with respect to t.
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1.9. FURTHER PROPERTIES OF QUADRATIC COVARIATION 11

1.8.1 Brownian motion: continuous, time-homogeneous PII

An Itô process with zero drift and constant volatility equal to 1 is called the standard
Brownian motion. Thus an Itô process W is a standard Brownian motion under P iff

bW = 0 and cW = 1.

It is customary to write an Itô process X with characteristics bX, cX as follows

dXt = bX
t dt +

√
cX

t dWt. (1.12)

However, this has no clear advantages and becomes counterproductive when one
deals with several correlated processes.

1.8.2 Computation of drift and volatility from the Itô formula

To illustrate computations without Brownian motion consider the univariate form of
the Itô formula

dg(Xt) = g′(Xt)dXt +
1
2

g′′(Xt)(dXt)
2

= g′(Xt)dXt +
1
2

g′′(Xt)cX
t dt.

(1.13)

This formula stresses the important fact that g(Xt) does not depend on the probability
measure. There is no need to substitute (1.12) for dXt.

If we wish to calculate the P–drift of g(X) we will simply evaluate it as the P–drift
of the right-hand side in (1.13)

bg(X)
t = g′(Xt)bX

t +
1
2

g′′(X)cX
t .

Likewise, to evaluate the volatility of g(X) we use the property (1.8) to obtain from
(1.13),

(dg(Xt))
2 = (g′(Xt))

2(dXt)
2 = (g′(Xt))

2cX
t dt,

cg(X)
t = (g′(Xt))

2cX
t .

1.9 Further properties of quadratic covariation

Proposition 1.10. The following statements hold:

1. Suppose X is a predictable process of finite variation and Y is a general continuous

c© Aleš Černý 2012-2020

Heqing

Heqing

Heqing

Heqing



12 CHAPTER 1. (MOSTLY) CONTINUOUS-TIME STOCHASTIC CALCULUS

process. Then
[X, Y] = 0.

2. Suppose M is a local martingale starting at 0. Then [M, M] = 0 if and only if M = 0.

Proof. See Jacod and Shiryaev, 2003, I.4.49d) and I.4.50d).

In the context of Itô processes part 1 of Proposition 1.10 implies

dtdY = 0,

for any Itô process Y. The 2nd part of Proposition 1.10 shows that an Itô process X has
zero quadratic variation if and only if it is of the form X =

∫ t
0 bX

s ds, i.e. if and only if it
is equal to its drift part.

Please note that in our simplified notation (dYt)2 = cY
t dt which in words means

that “quadratic variation of Y grows at the rate cY”. We are NOT allowed to take a

square root here, i.e. it is not true that dYt =
√

cY
t dt.

1.9.1 Portfolio theorem for Itô processes

Theorem 1.11. Suppose that X is an n-dimensional Itô process with covariation matrix cX.
Consider two processes dYt = ηtdXt and dZ = ξdX with η, ξ being n× 1–valued predictable
processes. Then

dYtdZt =
n

∑
i=1

η
(i)
t dX(i)

t

n

∑
j=1

ξ
(j)
t dX(j)

t

=
n

∑
i,j=1

η
(i)
t ξ(j)dX(i)

t dX(j)
t =

n

∑
i,j=1

η
(i)
t ξ

(j)
t cX

ij dt

=ηcXξ>dt.

1.9.2 Quadratic variation and variance

There is a link between conditional variance and quadratic variation of a diffusion.
Suppose we have

bX = f (t, X),

cX = g(t, X),

c© Aleš Černý 2012-2020

Heqing

Heqing

Heqing



1.9. FURTHER PROPERTIES OF QUADRATIC COVARIATION 13

in other words suppose that X is a diffusion. Under some technical conditions which
govern the variability of f and g we have

Et[Xt+δ − Xt] = bX
t δ + o(δ),

Vart(Xt+δ − Xt) = cX
t δ + o(δ),

where the quantity o(δ) is “much smaller than δ as δ→ 0”. This means that for a very
short time step δ the conditional variance of the shock to X (shock = Xt+δ − Xt) is
equal (with error o(δ)) to the increase in the quadratic variation process. Another way
to say this is to write

lim
δ→0

Vart(Xt+δ − Xt)

δ
= cX

t ,

which means that the variance of the shock per unit of time equals the quadratic vari-
ation rate of the process.

The link between quadratic variation and variance in general only holds over short
time horizons. Long-term it only holds in the special case of the continuous PII, see
Proposition 1.9.

For the deterministic (PII) process Xt = t, we have [X, X] = 0 and Var(Xt) = 0.
On the other hand, consider X =

∫ t
0 Wsds where W is a standard Brownian motion.

We still have [X, X] = 0 but Var(X) = t3/3 > 0 as shown in the example below. This
means that there are many processes which have zero conditional variance over a short
period of time but non-zero variance over long horizons. These processes are made of
pure drift (hence zero conditional variance over short horizons) but because the drift
is itself random the cumulative effect of that randomness leads to non-zero variance
over long time horizons. In financial context a good example is the cumulative return
on a bank account with risk-free short rate, when the short rate is itself stochastic.

Example 1.12. Let us evaluate the variance of
∫ T

0 Wsds with W being the standard Brownian
motion starting at W0 = 0.

Solution: The solution uses the Itô formula and integration of a Gaussian process. Itô formula
tells us

d(tWt) = tdWt + Wtdt + dWtdt = tdWt + Wtdt.

Rearrange to get Wtdt on the left-hand-side

Wtdt = d(tWt)− tdW
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14 CHAPTER 1. (MOSTLY) CONTINUOUS-TIME STOCHASTIC CALCULUS

and write this as an integral
∫ T

0∫ T

0
Wsds = WTT −W00−

∫ T

0
sdWs

=(WT −W0)T −
∫ T

0
sdWs

=T
∫ T

0
dWs −

∫ T

0
sdWs

=
∫ T

0
(T − s)dWs.

Consequently proposition 1.9, part 3) yields

Var(
∫ T

0
Wsds) = Var(

∫ T

0
(T − s)dWs) =

∫ T

0
(T − s)2ds = T3/3.

1.10 Zero drift and martingales

It follows from the canonical decomposition that X is a local martingale under P if and
only if

bX
s = 0 for all s ∈ [0, T]. (1.14)

We say that X is a true martingale if and only if

Xs = Es[Xu] for all s ≤ u ≤ T. (1.15)

Every true martingale has zero drift but not every process with zero drift is a true
martingale. There are two important results which characterize true martingales:

Proposition 1.13 (first martingale proposition). An Itô process X with zero drift is a true
martingale provided its volatility satisfies the Novikov condition

E[exp(
1
2

∫ T

0
cX

s ds)] < ∞.

Proposition 1.14 (second martingale proposition). Consider a random variable Y with
E[|Y|] < ∞. Process X defined by

Xs = Es[Y] for all s ≤ T, (1.16)

is a martingale.

Zero drift is a necessary but not a sufficient condition for a process to be a mar-
tingale, but one can put technical conditions on cX which guarantee that (1.14) au-
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1.11. CHANGE OF MEASURE 15

tomatically implies (1.15). In this course we assume that such conditions are always
satisfied.

Proposition 1.15. A local martingale bounded from below is a supermartingale, i.e. it is a
process decreasing in expectation

Xs ≥ Es[Xt] for s ≤ t.

Conversely, a local martingale bounded from above is a submartingale, i.e. a process increasing
in expectation.

1.11 Change of measure

A probability measure P? on (Ω, F ) is absolutely continuous with respect to P,

P? � P,

iff there is a non-negative random variable on (Ω, F ), which we denote by dP?

dP and
call the change of measure, such that

EP?
[X] = E

[
dP?

dP
X
]

, (1.17)

for all non-negative random variables X. Property (1.17) with X = 1 yields

E
[

dP?

dP

]
= 1,

which simply means that the new probabilities P? add up to 1 across all possible out-
comes.

We have P?( dP?

dP > 0) = 1, however P( dP?

dP > 0) ≤ 1 (intuitively some paths with
positive P probability may have zero P? probability). If also P( dP?

dP > 0) = 1 then we
say that P? is equivalent to P and write P? ∼ P. This means that both dP?/dP and
dP/dP? are well-defined and in fact dP?/dP = 1/(dP/dP?).

1.11.1 Density process

We say that Z is a density process associated with the change of measure dP?/dP if there
is a constant c such that for all t

Zt = cEt[dP?/dP]. (1.18)
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16 CHAPTER 1. (MOSTLY) CONTINUOUS-TIME STOCHASTIC CALCULUS

Thus density process Z is determined by dP?/dP uniquely up to a multiplicative con-
stant. In the literature one often requires a further normalization Z0 = 1 which corre-
sponds to c = 1 in equation (1.18). In practical calculations it is however convenient
to allow other values of c, see Section 1.11.2 for an example. This convention will later
allow us to interpret Zt itself as a price of some security.

Intuitively, Zt/Z0 provides the ratio of P?
t over Pt, where Pt is the P–probability of

going along a particular path from 0 to t. This is a key observation from which one
can deduce two further important results, assuming P? is equivalent to P:

1. The ratio of P over P? is given by Z0/Zt. Therefore Z−1 must be the density
process of dP/dP?. Prove it rigorously, i.e., show that

Z−1
t = EP?

[
Z−1

T

]
.

2. The ratio ZT/Z0 is the change of measure between 0 and T; likewise, Zt/Z0

is the change of measure between 0 and t. The probability of a given path on
the interval [0, T] is the probability of the [0, t]–segment multiplied the con-
ditional probability of the (t, T]–segment conditional on the [0, t]–segment.
Therefore, the conditional change of measure between t and T is given by
(ZT/Z0)/(Zt/Z0) = ZT/Zt, so that we obtain

EP?

t [X] = Et

[
X

ZT

Zt

]
, (1.19)

whenever one of the two expressions is well defined.

Equation (1.19) yields the following result, which, in turn, is the key to the Girsanov
theorem.

Proposition 1.16 (third martingale proposition). Suppose P? ∼ P with density process
Zt = cEt[dP?/dP] and Y is a P–semimartingale. Then the following statements hold

1. Y is a P?–local martingale ⇐⇒ ZY is a P–local martingale,

2. Y is a P?–martingale ⇐⇒ ZY is a P–martingale.

For further material on the density process see for example Černý (2009, Chapter 9).
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1.11. CHANGE OF MEASURE 17

1.11.2 Typical example of measure change and its density process

In the Black–Scholes model one typically encounters a change of measure of the form

dP?

dP
=

Sη
T

E[Sη
T]

, η ∈ R.

We can therefore take density process in the form

Zt = Et[S
η
T].

Most often P will be interpreted as the money-market risk-neutral measure. Using the
fact that ln S is an Itô PII with constant drift and volatility,

bln S = r− δ̂− σ2

2
, cln S = σ2,

Proposition 1.9 yields

ln ST|Ft ∼ N(ln St + bln S(T − t), cln S(T − t)),

and therefore

η ln ST|Ft ∼ N(η ln St + ηbln S(T − t), η2cln S(T − t)).

From the moment generating function of a normal distribution we finally obtain

Zt =Et[S
η
T] = Et[eη ln ST ] = eη ln St+ηbln S(T−t)+ 1

2 η2cln S(T−t)

= Sη
t exp

(
ηbln S(T − t) +

1
2

η2cln S(T − t)
)

.

1.11.3 Interpretation of measure change in a pricing formula

Let us take P to be the T–forward risk-neutral measure. Let XT be the pay-off of a
contingent claim (for example a call option). The martingale X defined by

Xt = Et[XT] (1.20)

is then the forward price of XT (there is no discounting in (1.20)). Consider a new mea-
sure P? with a density process Z, dP∗/dP = ZT/Z0. By construction, Zt can be inter-
preted as the forward price of ZT. Hence Z can be understood as another derivative
contract and the change of measure dP∗/dP = ZT/Z0 is simply the total return on the
buy-and-hold position in this new derivative.
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18 CHAPTER 1. (MOSTLY) CONTINUOUS-TIME STOCHASTIC CALCULUS

Recall that Z−1 is the density of P relative to P?. Hence we can write

Xt = Et[XT] = EP?

t

[
XT

Z−1
T

Z−1
t

]

and after rearranging
Xt

Zt
= EP?

t

[
XT

ZT

]
.

This means that P? can again be seen as a pricing measure, but the pay-offs and prices
have to be expressed in the units of Z. In this context we say that Z is a new numéraire
(unit of account).

1.11.4 More general construction of the density process

Consider an Rd-valued Itô process X with martingale part MX = X− BX. Consider an
Rd-valued predictable process η (no longer a constant) and define a P-local martingale
Z

dZt

Zt
= ηt(dXt − bX

t dt), (1.21)

Z0 >0. (1.22)

Z is our candidate for the density process.2 On application of the Itô formula with
g(Z) = ln Z one obtains

d ln Zt = η(dXt − bX
t dt)− 1

2
ηcX

t η>dt.

On writing this expression in integral form (cf. equation 1.3) we have

ln Zt = ln Z0 +
∫ t

0
ηsdXs −

∫ t

0
(ηsbX

s +
1
2

ηscX
s η>s )ds

Zt =Z0e
∫ t

0 ηsdXs−
∫ t

0 (ηsbX
s +

1
2 ηscX

s η>s )ds. (1.23)

This shows Z > 0 as long as Z0 > 0. Finally, for Z to be a density process it must be a
true martingale under P, i.e., Zt = Et[ZT] for all t. However, in our case it is enough to
show E[ZT/Z0] = 1. This happens because Z is a local martingale (see equation 1.21)
bounded below (by 0) and it is therefore a supermartingale. In turn, a supermartingale
Z is a true martingale if and only if E[ZT] = Z0.

2N.B. For Z to be a density process it must be a P-martingale and therefore also a P–local martingale.
Therefore the right hand side of (1.21) must have zero P-drift.
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1.12 Girsanov theorem for Itô processes

Theorem 1.17. Suppose an Itô process Z is a density process associated with the change of
measure dP?/dP. For any process X such that (X, Z) is jointly an Itô process one has

bX
P?(t) = bX(t) +

dXt
dZt
Zt

dt
= bX(t) +

dXtd ln Zt

dt
,

that is by going from measure P to measure P? the drift of Y increases by the rate of covariation
between dX and dZ/Z (equivalently, between dX and d ln Z).

Specifically if Z satisfies
dZt

Zt
= ηt(dXt − bX

t dt), (1.24)

which is equivalent to
Zt = Z0e

∫ t
0 ηsdXs−

∫ t
0 (ηsbX

s +
1
2 ηscX

s η>s )ds,

then
bX

P? = bX + cXη>.

Remark 1.18. Girsanov theorem is easily derived from the Itô formula as a consequence of
Proposition 1.16. Let BX

P? be the drift component of X under P?. We know that BX
P? is unique.

By Proposition 1.16 X − BX
P? is a P?-local martingale if and only if Z(X − BX

P?) is a P–local
martingale. From the Itô formula

d(Zt(Xt − BX
P?(t))) =Zt(dXt − dBX

P?(t)) + (Xt − BX
P?(t))dZt + dZtdXt

= Zt(dBX(t)− dBX
P?(t) +

dZt

Zt
dXt)︸ ︷︷ ︸

predictable FV process

+ ZtdMX
t + (Xt − BX

P?(t))dZt︸ ︷︷ ︸
P–local martingale

.

The right-hand side is a P–local martingale (it has no drift under P) iff

dBX(t)− dBX
P?(t) +

dZt

Zt
dXt =0,

which yields

dBX
P?(t) =dBX(t) +

dZt

Zt
dX (1.25)

Since dZt
Zt

= d ln Zt + continuous FV process we obtain that dZt/Zt can be replaced by ln Zt

in (1.25). Finally, in the special case (1.24), we have dXtdZt/Zt = cXη>dt and this concludes
the proof.
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1.13 Stochastic exponential and stochastic logarithm

In Finance one often encounters processes with increments of the form

dYt

Yt−
.

This process has a name, it is called the stochastic logarithm of Y and it is denoted by
L(Y)

dL(Y)t =
dYt

Yt−
,

L(Y)0 =0.

The process is well defined if Y does not go to zero continuously.
Conversely, suppose we are given the SDE

dYt

Yt−
= dXt, (1.26)

and we wish to express Y in terms of X. If Y0 = 1 then the solution of (1.26) is called the
stochastic exponential of X and it is denoted by E (X). Thus the stochastic exponential
satisfies

dE (X)t =E (X)t−dXt,

E (X)0 =1.

If you have ever used the change of measure in the Girsanov theorem, or worked with
the Black–Scholes model, then you have come across both the stochastic logarithm and
stochastic exponential, perhaps without realizing it.

The usefulness of stochastic logarithm and stochastic exponential stems from pro-
viding a very compact notation. Instead of saying “the process with increment dY/Y”
we simply say L(Y). Instead of “capital gain rate process corresponding to the price
process S” we say L(S). Since most of finance (not only in continuous time) is based
on the interplay between the capital gain rate process L(S) and the log return process
ln S it is very useful to have a simple notation for the former.

The stochastic exponential is similarly ubiquitous in finance. Instead of “fund
value F generated by the cumulative rate of return process X” we can say F0E (X).
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1.14 Derivation of the Black–Scholes formula

Consider a stock without dividends and denote its price by S. Assume that the risk-
free rate r and the dividend yield δ̂ are constant and that the capital gains rate process
L(S) has constant volatility,

√
cL(S) = σ (recall that dL(S) = dS

S ).

Denote the money market risk–neutral measure by P. The option pricing theory
tells us that in the absence of arbitrage the expected rate of return equals the risk-free
rate under P. That means

bL(S) = r− δ̂, cL(S) = σ2.

Consequently L(S) is an Itô PII under P.

1.14.1 Distribution of log returns

Consider a function f and a derivative with payoff f (ST). In our case

f (ST) = (ST − K)+

corresponds to a European call option. The no-abitrage theory shows that the price of
the derivative equals

C0 = e−rTE [ f (ST)] .

All we need to do is to work out the distribution of ST. To this end, we apply the Itô
formula to ln S

d ln St =
dSt

St
− 1

2

(
dSt

St

)2

= dL(S)− 1
2

cL(S)dt. (1.27)

This also implies
cln S = cL(S),

meaning that capital gain rate and log return have the same volatility. Since L(S) is an
Itô PII under P we conclude from (1.27) that ln S is also an Itô PII under P with

bln S = bL(S) − cL(S)/2 = r− δ̂− σ2/2,

and we can apply Proposition 1.9 to conclude

ln ST
P∼ N(ln S0 + (r− δ̂− σ2/2)T, σ2T).
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1.14.2 Pricing formula

We start by computing the expectation of a truncated lognormal variable. This is a
standard result used ubiquitously in option pricing.

Lemma 1.19. Let Y ∼ N(m, s2) and y1 ≤ y2. Then

E
[
eαY1y1<Y<y2

]
=eαm+ 1

2 α2s2
(

Φ
(

y2 −m− αs2

s

)
−Φ

(
y1 −m− αs2

s

))
=eαm+ 1

2 α2s2
(

Φ
(

m + αs2 − y1

s

)
−Φ

(
m + αs2 − y2

s

))
.

In case y1 = −∞ or y2 = ∞ use Φ(−∞) = 0, Φ(∞) = 1.

Proof. See for example Černý, 2009, Example B.25.

It is now a simple matter to evaluate the option price by writing

erTC0 = E
[
(ST − K)+

]
= E

[
(ST − K)1ST>K

]
= E

[
(eln ST − K)1ln ST>ln K

]
= E

[
eln ST 1ln ST>ln K

]
− KE

[
1ln ST>ln K

]
,

and employing Lemma 1.19 with y1 = ln K, y2 = ∞ and Y = ln ST, implying

m = ln S0 + (bL(S) − cL(S)/2)T,

s2 = cL(S)T.

We set α = 1 and 0 for the first and the second expectation, respectively. This yields

C0 = S0e(b
L(S)−r)TΦ

(
ln S0

K + (bL(S) + cL(S)/2)T√
cL(S)T

)

−Ke−rTΦ

(
ln S0

K + (bL(S) − cL(S)/2)T√
cL(S)T

)
. (1.28)

1.14.3 Black–Scholes model with constant dividend yield

Recall that S denotes the ex-dividend share price and δ̂ is a constant dividend yield,
meaning that the total dividend payment over time interval [0, t] is

∫ t
0 δ̂Sudu. Financial

theory tells us that the rate of return on the asset has to equal the risk-free rate under
the money market measure P. Now the total rate of return arises from two sources -
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capital gains rate dSt/St and dividend yield δ̂dt

dSt

St
+ δ̂dt = dL(S)t + δ̂dt.

Under the money market risk-neutral measure the expected rate of return is therefore

r = bL(S) + δ̂,

implying we must have
bL(S) = r− δ̂.

1.15 Construction of PDEs in Finance

Partial differential equations used in the pricing of derivatives express a simple fact,
namely that a certain process related to the price of the derivative, expressed as a
function of some state variables is a martingale under a suitably chosen probability
measure. One can vary the three main ingedients by changing i) the measure, ii) the
target function and iii) the state variables, but the main principle is always the same
— some quantity is a martingale.

Let us first examine the most natural setting dictated by financial rather than com-
putational considerations. Here the target function will be the option price, the state
variables will consist of time and stock price and the relevant measure will be the
risk-neutral measure.

1.15.1 Black–Scholes PDE

As discussed above the input parameters governing the rate of return process are

bL(S) = r− δ̂, cL(S) = σ2.

From the financial theory the price of the derivative equals

Ct = e−r(T−t)Et [ f (ST)] .

We have dS = SdL(S) and consequently

bS = SbL(S), cS = S2cL(S).

By Proposition 1.7 S is a Markov process under the risk-neutral measure P and there
is a function g such that

Ct = g(t, St).
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Furthermore the process Cte−rt = Et
[

f (ST)e−rT] is a martingale by Proposition 1.14
and therefore it must have zero drift. From the Itô formula

d
(
Cte−rt) = e−rt(dCt − rCtdt)

dCt = dg(t, St) = ∂1g(t, St)dt + ∂2g(t, St)dSt +
1
2

∂22g(t, St)cS
t dt

and the zero drift condition for Ce−rt yields the Black–Scholes PDE

0 = ∂1g(t, S) + ∂2g(t, S)bL(S)S +
1
2

∂22g(t, S)S2cL(S) − rg(t, S).

g(T, S) = (S− K)+

1.15.2 Change of variables and change of target function

The previous derivation suggests a way to simplify the martingale PDE. Firstly we
will write the pay-off of the derivative asset as a function of ln ST. For a call option
with strike K this means taking f (x) = (ex − K)+. We take as the target function
the forward option price Yt = Et [ f (ln ST)]. Since ln S is a Markov process under P
(with bln S = r − δ̂− σ2/2, cln S = σ2) we have that Yt = g(t, ln St) for some function
g. Moreover, by virtue of (1.16) Y is a P–martingale, and therefore bY = 0. If g is
sufficiently smooth the Itô formula yields

0 = bY = ∂1g(t, x) + ∂2g(t, x)bln S +
1
2

∂22g(t, x)cln S (1.29)

= ∂1g(t, x) + ∂2g(t, x)(r− δ̂− σ2/2) +
1
2

∂22g(t, x)σ2,

and the boundary condition reads

g(T, x) = (ex − K)+ . (1.30)

Once we solve for g the price of the derivative is given by Ct = er(t−T)g(t, ln St).

1.15.3 Towards the heat equation

One can get rid of the drift term ∂2g(t, x)bln S in the previous PDE by using a state vari-
able that is itself a martingale. One way to do this is to consider Xt = ln St + bln S(T− t)
under the money market risk-neutral measure P. Such a transformation works well
for path-independent derivatives. For a call option with strike K this means solving

0 = ∂1g(t, x) +
1
2

∂22g(t, x)cL(S),

c© Aleš Černý 2012-2020



1.15. CONSTRUCTION OF PDES IN FINANCE 25

g(T, x) = (ex − K)+.

The option price at t is then given by

Ct = er(t−T)g(t, ln St + bln S(T − t)).

1.15.4 Obtaining the heat equation by change of measure

Another useful way of transforming the pricing PDE is to keep X = ln S, f (x) =

(ex − K)+ and consider a new measure P? of the form

Zt = eηXt+(ηbX+ 1
2 η2cX)(T−t), (1.31)

dP?

dP
=

ZT

Z0
, (1.32)

for a constant η, as discussed in Section 1.11.2. Since we take P to be the money market
risk-neutral measure, we have bX = bln S = r− δ̂− σ2/2. In the Black–Scholes model
cX = cln S = σ2.

We know from Section 1.11.3 that EP?

t [ f (XT)/ZT] gives the forward price of f (XT)

expressed in terms of the numeraire Zt. The Girsanov theorem yields

bX
P? = bX + ηcX = r− δ̂− σ2

2
+ ησ2.

Consider the P?–martingale EP?

t
[

f (XT)e−ηXT
]
. Since X is Markov under P? we

conclude that there must be a function g(t, x) such that

g(t, Xt) = EP?

t

[
f (XT)e−ηXT

]
. (1.33)

Assuming that g is sufficiently differentiable, the Itô formula implies that g must sat-
isfy the PDE

0 =∂1g(t, x) + ∂2g(t, x)
(

r− σ2

2
+ ησ2

)
︸ ︷︷ ︸

bX
P?

+
1
2

∂22g(t, x) σ2︸︷︷︸
cX

, (1.34)

g(T, x) =e−ηx f (x). (1.35)

Recall that g gives the price of the derivative in terms of the numeraire Z. Once we
solve for g, the spot price of the option at time t is given by

Ct = er(t−T)Ztg(t, Xt) (1.36)

= e(η(r−σ2/2)+ 1
2 η2σ2−r)(T−t)Sη

t g(t, ln St). (1.37)
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We observe that the numeraire in this case is a fund whose value at time T equals Sη
T,

a power contract. Two values of η are worth pointing out. Firstly,

η = −bln S/cln S = 1/2 + (δ̂− r)/σ2

will give bln S
P? = 0. Secondly, η = 1 will turn the payoff in the numeraire units,

f (XT)e−ηXT =
(
1− Ke−XT

)+, into a function bounded between 0 and 1. The value
η = 1 corresponds to the T–forward stock risk-neutral measure because the numeraire
is one share sold forward to be delivered at T.

Remark 1.20. Wilmott, Howison, and Dewynne (1995) use η = −bln S/cln S and assume
zero dividend yield, δ̂ = 0, which leads to η = 1/2− r/σ2 leading to bln S

P? = 0. They use
slightly different state variables: X = ln S − ln K instead of ln S and so-called “operational
time to maturity” τ = σ2

2 (T− t) instead of t. The target function is u(τ, x) = g(t, x)/K. On
account of ∂

∂t =
dτ
dt

∂
∂τ equations (1.34, 1.35) yield

0 = − σ2

2
∂1u(τ, x) +

σ2

2
∂22u(τ, x),

u(0, x) = e−ηx (ex − 1)+ ,

Ct =Ke−η ln Keη ln St+(η(r−σ2/2)−r+ 1
2 η2σ2)(T−t)u

(
σ2

2
(T − t), ln

St

K

)
. (1.38)

On rearranging the PDE turns into a heat equation

∂1u(τ, x) = ∂22u(τ, x).
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Chapter 2

Principles of asset pricing
2.1 Brute force derivation of the Black–Scholes formula

2.1.1 Black–Scholes model with constant dividend yield

Consider a stock with dividends, denoting the ex-dividend share price by S. Assume
that the risk-free rate r and the dividend yield δ̂ are constant. The dividends are payed
continuously to give the total dividend payment over time interval [0, t] of

∫ t
0 δ̂Sudu.

We further assume, in line with the Black–Scholes model, that the capital gains rate
process L(S) has constant volatility σ, meaning cL(S) = σ2 (recall that dL(S)t =

dSt
St

).
The total rate of return arises from two sources - capital gains rate dSt/St and div-

idend yield δ̂dt
dSt

St
+ δ̂dt = dL(S)t + δ̂dt.

Under the money market risk-neutral measure the expected rate of return on the stock
investment must equal risk-free return,

r = bL(S) + δ̂.

Denote the money market risk–neutral measure by P. We have

bL(S) = r− δ̂, cL(S) = σ2.

Consequently L(S) is an Itô PII under P. The Itô formula

d ln St =
dSt

St
− 1

2

(
dSt

St

)2

then yields

bln S = r− δ̂− 1
2

σ2, cln S = σ2.

Therefore ln S, too, is an Itô PII under P.
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2.1.2 Distribution of log returns

Consider a function f and a derivative with payoff f (ST). In our case

f (ST) = (ST − K)+

corresponds to a European call option. The no-abitrage theory shows that the price of
the derivative equals

C0 = e−rTE [ f (ST)] .

All we need to do is to work out the distribution of ST. To this end, we apply the Itô
formula to ln S

d ln St =
dSt

St
− 1

2

(
dSt

St

)2

= dL(S)− 1
2

cL(S)dt. (2.1)

This also implies
cln S = cL(S),

meaning that capital gain rate and log return have the same volatility. Since L(S) is an
Itô PII under P we conclude from (2.1) that ln S is also an Itô PII under P with

bln S = bL(S) − 1
2

cL(S) = r− δ̂− 1
2

σ2,

and we can apply Proposition 1.9 to conclude

ln ST
P∼ N(ln S0 + (r− δ̂− σ2/2)T, σ2T).

2.1.3 Pricing formula

We start by computing the expectation of a truncated lognormal variable. This is a
standard result used ubiquitously in option pricing.

Lemma 2.1. Let Y ∼ N(m, s2) and y1 ≤ y2. Then

E
[
eαY1y1<Y<y2

]
=eαm+ 1

2 α2s2
(

Φ
(

y2 −m− αs2

s

)
−Φ

(
y1 −m− αs2

s

))
=eαm+ 1

2 α2s2
(

Φ
(

m + αs2 − y1

s

)
−Φ

(
m + αs2 − y2

s

))
.

In case y1 = −∞ or y2 = ∞ use Φ(−∞) = 0, Φ(∞) = 1.

Proof. See for example Černý (2009), Example B.25.

It is now a simple matter to evaluate the option price by writing

erTC0 = E
[
(ST − K)+

]
= E

[
(ST − K)1ST>K

]
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= E
[(

eln ST − K
)

1ln ST>ln K

]
= E

[
eln ST 1ln ST>ln K

]
− KE

[
1ln ST>ln K

]
,

and employing Lemma 2.1 with y1 = ln K, y2 = ∞, and Y = ln ST. This means we
must take

m = ln S0 + bln ST,

s2 = cln ST.

We set α = 1 for the first and α = 0 for the second expectation, respectively. This yields

C0 = S0e(b
ln S+cln S/2−r)TΦ

(
ln S0

K + (bln S + cln S/2)T√
cln ST

)

− Ke−rTΦ

(
ln S0

K + bln ST√
cln ST

)
.

(2.2)

2.2 Wealth going forward in time

2.2.1 Stock fund

Consider a stock with a continuous ex-dividend price S and cumulative dividend∫ t
0 δ̂Sudu. Let us now build an investment fund with initial value F0 that invests all

its assets in this particular stock. We have

dFt =
Ft

St
(dSt + δ̂Stdt).

Use the Itô formula to pass from dFt to d ln Ft,

d ln Ft = d ln St + δ̂dt,

then integrate and exponentiate to obtain

Ft = F0
St

S0
eδ̂t.

If we start with one share, F0 = S0 then our stock fund will have the value

Ft = Steδ̂t.
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2.2. WEALTH GOING FORWARD IN TIME 25

Observe that

• one share at time 0 is worth more than one share at time t because of the
dividend stream;

• the spot value of one share delivered at time T is precisely

ST
Ft

FT
= Ste−δ̂(T−t).

• we have made no assumptions about the volatility of S;

• we have not assumed existence of a risk-free money market account either.

2.2.2 Money market fund

Imagine now a stock with a constant ex-dividend value S = 1 and stochastic dividend
yield rt. The same derivation as above gives

Ft = F0e
∫ t

0 rudu.

Now F represents the money market fund, which we can think of as the balance of a
bank account where the interest is continuously compounded and deposited back into
the account continuously. If the interest rates are deterministic then the spot value of
$1 delivered at time T is

Ft

FT
= e−

∫ T
t rudu = P(t, T),

i.e., the same as the price of time-T zero coupon discount bond.

2.2.3 Fixed proportions investment fund

Let us now condider a fund investing fixed proportion α in the stock and the rest in
the money market. The value of such fund must satisfy

dFt = Ft

(
(1− α)rtdt + α

(
dSt

St
+ δ̂dt

))
.

Once again, pass to ln Ft and ln St

d ln Ft = (1− α)rtdt + αδ̂dt + αd ln St +
1
2
(α− α2)dCln S

t .
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Now integrate and exponentiate

Ft = F0
Sα

t
Sα

0
e(1−α)

∫ t
0 rudu+αδ̂t+ 1

2 (α−α2)Cln S
t . (2.3)

As long as r and Cln S are deterministic, we are able to determine the spot price of one
α–power contract delivered at time T, with payoff Sα

T. This is done by choosing

F0 =
Sα

0

e(1−α)
∫ T

0 rudu+αδ̂T+ 1
2 (α−α2)Cln S

T

(2.4)

in (2.3).

• With α = 0 we get back to the zero-coupon discount bond.

• With α = 1 we obtain the stock fund that delivers one share at time T.

In these two cases no assumption on Cln S is required.

2.3 Wealth going back in time

In the previous section, we have specified some simple investment strategies and com-
puted their value at a terminal date T. Now we will go in the opposite direction, first
specify the value of a derivative asset at T and then construct an investment fund that
delivers this value. We assume throughout the risk-free rate r, the divident yield δ̂,
and the log stock return volatility

√
cln S = σ are constant. We will denote the spot

price of the derivative by Ft, and the spot value of the numeraire fund by either F̃ or
by F.

2.3.1 Cash-or-nothing binary

The payoff of a cash-or-nothing binary call is FT = 1ST>K. We will take F to be the
fund with value of $1 at T, i.e.,

Ft = e−r(T−t)

and P to be the corresponding risk-neutral measure which is commonly called the T-
forward measure. Observe that F is just a fixed multiple of the money market fund of
Subsection 2.2.2, therefore P coincides with the money market risk-neutral measure.
The T–forward price equals

Et

[
FT

FT

]
= Et[1ST>K] = P(ST > K|Ft).
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To obtain the spot price, multiply the T–fwd price by the value of T–zero coupon
discount bond,

Ft = Ft × Et

[
FT

FT

]
= e−r(T−t)Φ

(
ln St

K + (r− δ̂− σ2

2 )(T − t)
σ
√

T − t

)

2.3.2 Asset-or-nothing binary

The payoff of an asset-or-nothing binary call is FT = ST1ST>K. As a numeraire we will
use the fund that contains one share at time T,

F̃t = Ste−δ̂(T−t).

We will call the corresponding risk-neutral measure the “stock–T–fwd“ measure. Ob-
serve that F̃ is a fixed multiple of the stock fund in Subsection 2.2.1, therefore the
stock–T–fwd measure coincides with the stock fund risk-neutral measure in this set-
ting. The stock–T–fwd price of the asset-or-nothing binary equals

Ẽt

[
FT

F̃T

]
= Ẽt[1ST>K] = P̃(ST > K|Ft).

To obtain the spot price, multiply the stock–T–fwd price by the spot value of one share
delivered at T,

Ft = F̃t × Ẽt

[
FT

F̃T

]
= Ste−δ̂(T−t)Φ

(
ln St

K + (r− δ̂ + σ2

2 )(T − t)
σ
√

T − t

)

Exercise 2.1. Compute the price of the derivative with the payoff Sα
T1ST>K for arbitrary α ∈ R.

2.3.3 Black–Scholes formula revisited

We can now see that the Black–Scholes formula has a much nicer financial interpreta-
tion as a mix of asset-or-nothing and cash-or-nothing binary call options,

Ct = F̃t × P̃(ST > K|Ft)− KFt × P(ST > K|Ft).
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2.3.4 Log contract

We will price FT = ln ST using the T–forward measure. We know that ln S is a contin-
uous PII under this measure. The conditional mean of ln ST − ln St is Bln S

T − Bln S
t =

(r− δ̂− σ2/2)(T − t). We therefore have

Ft = e−r(T−t)
(

ln St +

(
r− δ̂− σ2

2

))
(T − t).

2.3.5 Power contract

We will price FT = Sα
T using the T–forward measure. We know that

ln ST ∼ N
(

ln St +
(

r− δ̂− σ2/2
)
(T − t), σ2(T − t)

)
,

hence
α ln ST ∼ N

(
α ln St + α

(
r− δ̂− σ2/2

)
(T − t), α2σ2(T − t)

)
.

Use the moment generating function of the normal distribution to obtain the for-
ward price

Ft

Ft
= Et [Sα

T] = Et

[
eα ln ST

]
= Sα

t eα
(

r−δ̂− σ2
2

)
(T−t)+ 1

2 α2σ2(T−t).

Compare this formula for Ft with the constant proportions fund in (2.3) with initial
value (2.4).

2.3.6 Average log contract

The payoff at T is

FT =
1

T − T0

∫ T

T0

ln Stdt.

Here T > T0 ≥ 0 is the forward start date of the contract. For details see handwritten
notes.

2.4 Model-independent pricing

Some calculations above are universal, i.e., model-independent. For example, we have
several times converted rate of return to log return. When X is continuous the univer-
sal formula for this reads

E (X)t = eXt−X0+
1
2 [X,X]t .
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There is also a completely universal formula (works with jumps)

E (X)tE (Y)t = E (X + Y + [X, Y])t.

In particular, when X is continuous and Y has finite variation then [X, Y] = 0 and we
obtain the useful simplification

E (X + Y)t = E (X)tE (Y)t.

These properties can be used to derive (2.3) quickly and easily.

2.5 Universal pricing formula

The common principle behind all the results we have seen so far is

price of total return = 1.

More mathematically,

t–price of
FT

Ft
= 1.

Even more mathematically, fixing a numeraire fund F and the corresponding risk-
neutral measure P one obtains

Et

[
FT/Ft

FT/Ft

]
= 1. (2.5)

One immediate consequence of (2.5) is that if we consider another numeraire fund,
say F̃, then the two risk-neutral probabilities P̃ and P must be related by the formula

dP̃t

dPt
=

F̃t/F̃0

Ft/F0
,

meaning that

• the change between two risk-neutral measures equals the ratio of the corre-
sponding numeraire fund returns;

• the two risk-neutral measures will be the same if and only if the two numeraire
funds involved are a fixed multiple of each other;

• the ratio F/F is a P–martingale for any F and any matching pair (F, P).
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2.6 Construction of PDEs in Finance

Partial differential equations used in the pricing of derivatives express a simple fact,
namely that a certain process related to the price of the derivative, expressed as a
function of some state variables is a martingale under a suitably chosen probability
measure. One can vary the three main ingedients by changing i) the measure, ii) the
target function and iii) the state variables, but the main principle is always the same
— some quantity is a martingale.

Let us first examine the most natural setting dictated by financial rather than com-
putational considerations. Here the target function will be the option price, the state
variables will consist of time and stock price and the relevant measure will be the
risk-neutral measure.

2.6.1 Black–Scholes PDE

As discussed above the input parameters governing the rate of return process are

bL(S) = r− δ̂, cL(S) = σ2.

From the financial theory the price of the derivative equals

Ct = e−r(T−t)Et [ f (ST)] .

We have dS = SdL(S) and consequently

bS = SbL(S), cS = S2cL(S).

By Proposition 1.7 S is a Markov process under the risk-neutral measure P and there
is a function g such that

Ct = g(t, St).

Furthermore the process Cte−rt = Et
[

f (ST)e−rT] is a martingale by Proposition 1.14
and therefore it must have zero drift. From the Itô formula

d
(
Cte−rt) = e−rt(dCt − rCtdt)

dCt = dg(t, St) = ∂1g(t, St)dt + ∂2g(t, St)dSt +
1
2

∂22g(t, St)cS
t dt

and the zero drift condition for Ce−rt yields the Black–Scholes PDE

0 = ∂1g(t, S) + ∂2g(t, S)bL(S)S +
1
2

∂22g(t, S)S2cL(S) − rg(t, S).

g(T, S) = (S− K)+
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2.6.2 Change of variables and change of target function

The previous derivation suggests a way to simplify the martingale PDE. Firstly we
will write the pay-off of the derivative asset as a function of ln ST. For a call option
with strike K this means taking f (x) = (ex − K)+. We take as the target function
the forward option price Yt = Et [ f (ln ST)]. Since ln S is a Markov process under P
(with bln S = r − δ̂− σ2/2, cln S = σ2) we have that Yt = g(t, ln St) for some function
g. Moreover, by virtue of (1.16) Y is a P–martingale, and therefore bY = 0. If g is
sufficiently smooth the Itô formula yields

0 = bY = ∂1g(t, x) + ∂2g(t, x)bln S +
1
2

∂22g(t, x)cln S (2.6)

= ∂1g(t, x) + ∂2g(t, x)(r− δ̂− σ2/2) +
1
2

∂22g(t, x)σ2,

and the boundary condition reads

g(T, x) = (ex − K)+ . (2.7)

Once we solve for g the price of the derivative is given by Ct = er(t−T)g(t, ln St).

2.6.3 Towards the heat equation

One can get rid of the drift term ∂2g(t, x)bln S in the previous PDE by using a state vari-
able that is itself a martingale. One way to do this is to consider Xt = ln St + bln S(T− t)
under the money market risk-neutral measure P. Such a transformation works well
for path-independent derivatives. For a call option with strike K this means solving

0 = ∂1g(t, x) +
1
2

∂22g(t, x)cL(S),

g(T, x) = (ex − K)+.

The option price at t is then given by

Ct = er(t−T)g(t, ln St + bln S(T − t)).

2.6.4 Obtaining the heat equation by change of measure

Another useful way of transforming the pricing PDE is to keep X = ln S, f (x) =

(ex − K)+ and consider a new measure P? of the form

Zt = eηXt+(ηbX+ 1
2 η2cX)(T−t), (2.8)

dP?

dP
=

ZT

Z0
, (2.9)
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for a constant η, as discussed in Section 1.11.2. Since we take P to be the money market
risk-neutral measure, we have bX = bln S = r− δ̂− σ2/2. In the Black–Scholes model
cX = cln S = σ2.

We know from Section 1.11.3 that EP?

t [ f (XT)/ZT] gives the forward price of f (XT)

expressed in terms of the numeraire Zt. The Girsanov theorem yields

bX
P? = bX + ηcX = r− δ̂− σ2

2
+ ησ2.

Consider the P?–martingale EP?

t
[

f (XT)e−ηXT
]
. Since X is Markov under P? we

conclude that there must be a function g(t, x) such that

g(t, Xt) = EP?

t

[
f (XT)e−ηXT

]
. (2.10)

Assuming that g is sufficiently differentiable, the Itô formula implies that g must sat-
isfy the PDE

0 =∂1g(t, x) + ∂2g(t, x)
(

r− σ2

2
+ ησ2

)
︸ ︷︷ ︸

bX
P?

+
1
2

∂22g(t, x) σ2︸︷︷︸
cX

, (2.11)

g(T, x) =e−ηx f (x). (2.12)

Recall that g gives the price of the derivative in terms of the numeraire Z. Once we
solve for g, the spot price of the option at time t is given by

Ct = er(t−T)Ztg(t, Xt) (2.13)

= e(η(r−σ2/2)+ 1
2 η2σ2−r)(T−t)Sη

t g(t, ln St). (2.14)

We observe that the numeraire in this case is a fund whose value at time T equals Sη
T,

a power contract. Two values of η are worth pointing out. Firstly,

η = −bln S/cln S = 1/2 + (δ̂− r)/σ2

will give bln S
P? = 0. Secondly, η = 1 will turn the payoff in the numeraire units,

f (XT)e−ηXT =
(
1− Ke−XT

)+, into a function bounded between 0 and 1. The value
η = 1 corresponds to the T–forward stock risk-neutral measure because the numeraire
is one share sold forward to be delivered at T.

Remark 2.2. Wilmott, Howison, and Dewynne (1995) use η = −bln S/cln S and assume
zero dividend yield, δ̂ = 0, which leads to η = 1/2− r/σ2 leading to bln S

P? = 0. They use
slightly different state variables: X = ln S − ln K instead of ln S and so-called “operational
time to maturity” τ = σ2

2 (T− t) instead of t. The target function is u(τ, x) = g(t, x)/K. On
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account of ∂
∂t =

dτ
dt

∂
∂τ equations (2.11, 2.12) yield

0 = − σ2

2
∂1u(τ, x) +

σ2

2
∂22u(τ, x),

u(0, x) = e−ηx (ex − 1)+ ,

Ct =Ke−η ln Keη ln St+(η(r−σ2/2)−r+ 1
2 η2σ2)(T−t)u

(
σ2

2
(T − t), ln

St

K

)
. (2.15)

On rearranging the PDE turns into a heat equation

∂1u(τ, x) = ∂22u(τ, x).
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